
Efficient Gaussian Copula Density
Computation for Large-Scale Spatial Data: A
Matérn-like GMRF Approach with Circulant

and Folded Circulant Approximations
Brynjólfur Gauti Guðrúnar Jónsson

2024-08-25

This paper addresses the computational challenges in evaluating Gaussian copula
densities for large-scale spatial data, focusing on Matérn-like Gaussian Markov Ran-
dom Fields (GMRFs). We present a novel approach that bridges the gap between
GMRFs and copulas, allowing for efficient computation of Gaussian copula densi-
ties using GMRF precision structures. Our method leverages the special structure
of the precision matrix, employing eigendecomposition techniques to avoid explicit
formation and inversion of large matrices. We introduce circulant and folded circu-
lant approximations that offer significant computational advantages while preserv-
ing suitable boundary conditions. The results reveal substantial speed-ups com-
pared to traditional methods, particularly for large spatial fields. However, these
improvements come at the cost of increased complexity in implementation and the
need for careful consideration of approximation accuracy. This work underscores
the ongoing challenges in balancing computational efficiency with model fidelity
in spatial statistics, highlighting the trade-offs inherent in analyzing increasingly
large and complex spatial datasets.

Source: Article Notebook

Introduction

Problem Formulation

Consider a spatial field on a regular 𝑛1 × 𝑛2 grid. Our objective is to compute the Gaussian
copula density efficiently for this field. This computation involves:

1

https://bgautijonsson.github.io/MaternEigenPaper/index.qmd.html

1. Specifying an 𝑛1𝑛2 × 𝑛1𝑛2 precision matrix Q that represents the spatial dependence
structure.

2. Ensuring the implied covariance matrix � = Q−1 has unit diagonal elements.
3. Computing the log determinant, log |Q|, and the quadratic form 𝑧𝑇 Q𝑧 where 𝑧𝑖 =

Φ−1(𝑓𝑖(𝑦𝑖))

Review

Gaussian Markov Random Fields (GMRFs) and copulas are two powerful statistical tools,
each offering unique strengths in modeling complex data structures. GMRFs excel in captur-
ing spatial and temporal dependencies, particularly in fields such as environmental science,
epidemiology, and image analysis (Havard Rue and Held 2005; Knorr-Held 2000; Håvard Rue,
Martino, and Chopin 2009). Their ability to represent local dependencies through sparse preci-
sion matrices makes them computationally attractive for high-dimensional problems. Copulas,
on the other hand, provide a flexible framework for modeling multivariate dependencies, allow-
ing separate specification of marginal distributions and their joint behavior (Sklar 1959; Joe
1997; Nelsen 2006).

The Gaussian copula, in particular, has gained popularity due to its interpretability and con-
nection to the multivariate normal distribution. However, combining GMRFs with copulas
has historically been computationally challenging, limiting their joint application to smaller
datasets or simpler models.

Let X = (𝑋1, 𝑋2, … , 𝑋𝑛) be a multivariate random vector with marginal distribution functions
𝐹𝑖 for 𝑖 = 1, 2, … , 𝑛. The joint distribution function of X can be written as:

𝐹X(x) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)),

where 𝐶 is the Gaussian copula defined by the GMRF precision matrix Q. The Gaussian
copula 𝐶 is given by:

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = ΦQ(Φ−1(𝑢1), Φ−1(𝑢2), … , Φ−1(𝑢𝑛)),

where ΦQ is the joint cumulative distribution function of a multivariate normal distribution
with mean vector 0 and precision matrix Q, and Φ−1 is the inverse of the standard normal
cumulative distribution function.

A critical requirement for the precision matrix Q governing the GMRF copula 𝐶 is that
� = Q−1 should have a unit diagonal, i.e. the marginal variance is equal to one everywhere.
This ensures it operates on the same scale as the transformed data, Φ−1(𝑢𝑖). However, this
can be challenging as GMRFs are typically defined in terms of precision matrices that often
imply non-unit marginal variances. While related scaling issues have been addressed in spatial

2

statistics literature (Sørbye and Rue 2014; Riebler et al. 2016), their focus was on scaling
for use in priors for the BYM2 model, aiming for a consistent interpretation of the precision
parameter across different graph structures. In contrast, our work requires exact unit marginal
variance at each point, a more stringent condition necessitated by the copula framework.

Similarly to Håvard Rue (2005), this paper proposes a way to efficiently calculate the marginal
variances in GMRFs, but instead of working with the Cholesky decomposition of any general
GMRF precision matrix, we focus specifically on the sparse approximation to the Gaussian
field with Matérn coveriance as defined in Lindgren, Rue, and Lindström (2011):

Q = (Q𝜌1
⊗ In2

+ In1
⊗ Q𝜌2

)𝜈+1 ,

where Q𝜌 is the precision matrix of a standardized one-dimensional AR(1) process with corre-
lation 𝜌, 𝜈 is a smoothness parameter, and ⊗ denotes the Kronecker product.

By focusing on this type of matrix, we can utilize known results on the eigendecomposition
of Q and how it relates directly to the eigendecompositions of Q𝜌1

and Q𝜌2
. This lets us

avoid explicit formation and inversion of the large precision matrix Q, making it particularly
suitable for high-dimensional spatial data. In addition to the exact method, we show how the
precision matrix can be approximated by a folded circulant matrix wich gives a large speed-up
while preserving suitable boundary conditions (Kent and Mardia 2022; Mondal 2018; Besag
and Mondal 2005).

Methods

Gaussian Copula Density Computation

The Gaussian copula density for a random vector U = (𝑈1, ..., 𝑈𝑛) with 𝑈𝑖 ∼ Uniform(0, 1) is
given by:

𝑐(u) = |Q|1/2 exp (−1
2z𝑇 (Q − I)z)

where z = (𝑧1, ..., 𝑧𝑛) with 𝑧𝑖 = Φ−1(𝑢𝑖), Q is the precision matrix, and I is the identity
matrix.

The log-density can be expressed as:

log 𝑐(u) = 1
2 log |Q| − 1

2z𝑇 Qz + 1
2z𝑇 z

Our goal is to efficiently compute this log-density for large spatial fields.

3

Precision Matrix Structure

Similarly to the GMRF approximation to a Matérn process in (Lindgren, Rue, and Lindström
2011), we define the precision matrix Q as:

Q = (Q𝜌1
⊗ In2

+ In1
⊗ Q𝜌2

)(𝜈+1), 𝜈 ∈ {0, 1, 2}

where Q𝜌 is the precision matrix of a one-dimensional AR(1) process with correlation 𝜌:

Q𝜌 = 1
1 − 𝜌2

⎡
⎢
⎢
⎢
⎣

1 −𝜌 0 ⋯ 0
−𝜌 1 + 𝜌2 −𝜌 ⋯ 0
0 −𝜌 1 + 𝜌2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎦

.

The matrix, Q, is then scaled so that its inverse, � = Q−1 is a correlation matrix, i.e. �𝑖𝑖 = 1.

Computation Process

Step 1: Eigendecomposition of Q𝜌

We first compute the eigendecomposition of both Q𝜌:

Q𝜌 = V�A�V�
𝑇

where V� is the matrix of eigenvectors and A� is the diagonal matrix of eigenvalues. Then,
because of how 𝑄 is defined, its eigendecomposition is (see for example (“Matrix Analysis for
Scientists and Engineers | SIAM Publications Library,” n.d.)):

Q = (V�1 ⊗ V�2)(A�1 ⊗ I + I ⊗ A�2)(𝜈+1)(V�1 ⊗ V�2)𝑇 .

We don’t work with the full eigendecomposition, but rather utilize the fact that the eigenvalues
of Q are {𝜆𝜌1

}
𝑖
+ {𝜆𝜌2

}
𝑗

and their corresponding eigenvectors are {v𝜌1
}

𝑖
⊗ {v𝜌2

}
𝑗

to iterate
over each value and vector pair to compute the density without forming the larger matrix.

4

Step 2: Computation of Marginal Standard Deviations

In order to scale Q so that its inverse is a correlation matrix, we first calculate 𝜎𝑖 =
√

Σ𝑖𝑖,
𝑖 = 1, … , 𝑛1𝑛2. We then use these marginal standard deviations to scale the eigenvectors and
values. The inverse of 𝑄 is given by:

Σ = Q−1 = (𝑉 𝐴𝑉 𝑇)−1 = 𝑉 𝐴−1𝑉

The diagonal elements, Σ𝑖𝑖, are given by:

Σ𝑖𝑖 =
𝑛

∑
𝑘=1

𝑣𝑖𝑘
1
𝜆𝑘

(𝑣𝑇)𝑘𝑖 =
𝑛

∑
𝑘=1

𝑣𝑖𝑘
1
𝜆𝑘

𝑣𝑖𝑘 =
𝑛

∑
𝑘=1

𝑣2
𝑖𝑘

1
𝜆𝑘

This means that the 𝑖’th marginal variance, 𝜎2
𝑖 , is a weighted sum of the reciprocals of the

eigenvalues of Q where the weights are the squares of the 𝑖’th value in each eigenvector. This
means that we can calculate the marginal standard deviations by iterating over the eigenvalues
and -vectors of 𝑄𝜌1

and 𝑄𝜌2
and cumulating their values according to the formula above, then

taking the element-wise square roots.

Step 3: Scaling the Eigendecomposition

To scale the eigendecomposition of Q using the marginal standard deviations, we define a
diagonal matrix D, where 𝐷𝑖𝑖 = 𝜎𝑖 and scale the precision matrix as:

Q̃ = DQ𝜈+1D
= DVA𝜈+1V𝑇 D
= ṼÃṼ𝑇 .

In practice, we don’t scale the whole eigendecomposition. Instead, we rescale each value/vector
pair individually as we iterate over the eigenvectors and values of 𝑄𝜌1

and 𝑄𝜌2
to create the

corresponding values and vectors for the larger matrix.

Step 4: Efficient Computation of Log-Density

Using this scaled eigendecomposition, we efficiently compute:

1. Log-determinant: log |Q̃| = ∑𝑖,𝑗 log(𝜆̃𝑖𝑗), where 𝜆̃𝑖𝑗 is ({𝜆𝜌1
}

𝑖
+ {𝜆𝜌2

}
𝑗
)

𝜈+1
after

rescaling with marginal standard deviations.

5

2. Quadratic form: z𝑇 Q̃z = ∑𝑖,𝑗(𝜆̃𝑖𝑗)𝑦2
𝑖𝑗, where 𝑦𝑖𝑗 = ({v𝜌1

}
𝑖
⊗ {v𝜌2

}
𝑗
)

𝑇
z.

This approach allows us to calculate the density of the spatial copula by calculating and
iterating over the spectral decomposition of the smaller matrices, avoiding the formation of Q
alltogether.

Circulant and Folded Circulant Approximations

While the eigendecomposition method provides an exact solution, it can be computationally
expensive for very large spatial fields. To address this, we introduce circulant and folded
circulant approximations that offer computational efficiency and speed.

Circulant Matrices

A circulant matrix 𝐶 is a special kind of matrix where each row is a cyclic shift of the row
above it. It can be fully specified by its first row or column, called the base 𝑐:

𝐶 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑛−1
𝑐𝑛−1 𝑐0 𝑐1 ⋯ 𝑐𝑛−2
𝑐𝑛−2 𝑐𝑛−1 𝑐0 ⋯ 𝑐𝑛−3

⋮ ⋮ ⋮ ⋱ ⋮
𝑐1 𝑐2 𝑐3 ⋯ 𝑐0

⎞⎟⎟⎟⎟⎟⎟
⎠

= (𝑐𝑗−𝑖 mod 𝑛)

The base vector 𝑐 completely determines the circulant matrix and plays a crucial role in efficient
computations. In particular:

1. The eigenvalues of 𝐶 are given by the Discrete Fourier Transform (DFT) of 𝑐:

𝜆 = DFT(𝑐)

2. Matrix-vector multiplication can be performed using the FFT:

𝐶𝑣 = DFT(DFT(𝑐) ⊙ IDFT(𝑣))

3. When 𝐶 is non singular, then the inverse is circulant and thus determined by its base:

1
𝑛 IDFT(DFT(𝑐)−1).

These properties allow for much faster computations than for general matrices. For more
reading on applications of circulant matrices to GMRFs see (Havard Rue and Held 2005; Gray
2006).

6

Block Circulant Matrices

For two-dimensional spatial fields, we use block circulant matrices with circulant blocks
(BCCB). An 𝑁𝑛 × 𝑁𝑛 matrix C is block circulant if it has the form:

𝐶 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑁−1
𝐶𝑁−1 𝐶0 𝐶1 ⋯ 𝐶𝑁−2
𝐶𝑁−2 𝐶𝑁−1 𝐶0 ⋯ 𝐶𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮
𝐶1 𝐶2 𝐶3 ⋯ 𝐶0

⎞⎟⎟⎟⎟⎟⎟
⎠

= (𝐶𝑗−𝑖 mod 𝑁)

where each 𝐶𝑖 is itself a circulant 𝑛 × 𝑛 matrix.

For a BCCB matrix, we define a base matrix c, which is an 𝑛×𝑁 matrix where each column is
the base vector of the corresponding circulant block. This base matrix c completely determines
the BCCB matrix and is central to efficient computations:

1. The eigenvalues of 𝐶 are given by the 2D DFT of c.

2. Matrix-vector multiplication can be performed using the 2D FFT.

3. When 𝐶 is non singular, then the inverse is also a BCCB matrix and thus determined
by its base matrix.

Approximations for 𝑄𝜌

Let 𝑄𝜌 be the precision matrix of a one-dimensional AR(1) process with correlation 𝜌. The
exact form of 𝑄𝜌 is:

Q𝜌 = 1
1 − 𝜌2

⎡
⎢
⎢
⎢
⎣

1 −𝜌 0 ⋯ 0
−𝜌 1 + 𝜌2 −𝜌 ⋯ 0
0 −𝜌 1 + 𝜌2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎦

Circulant Approximation

The circulant approximation to 𝑄𝜌, denoted as Q(𝑐𝑖𝑟𝑐)
𝜌 , is:

7

Q(𝑐𝑖𝑟𝑐)
𝜌 = 1

1 − 𝜌2

⎡
⎢
⎢
⎢
⎣

1 + 𝜌2 −𝜌 0 ⋯ 0 −𝜌
−𝜌 1 + 𝜌2 −𝜌 ⋯ 0 0
0 −𝜌 1 + 𝜌2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−𝜌 0 0 ⋯ −𝜌 1 + 𝜌2

⎤
⎥
⎥
⎥
⎦

This approximation treats the first and last observations as neighbors, effectively wrapping
the data around a circle.

Folded Circulant Approximation

The folded circulant approximation, Q(𝑓𝑜𝑙𝑑)
𝜌 , is based on a reflected version of the data (Kent

and Mardia 2022; Mondal 2018; Besag and Mondal 2005). We double the data by reflecting
it, giving us the data 𝑥1, … , 𝑥𝑛, 𝑥𝑛, … , 𝑥1. We then model this doubled data with a 2𝑛 × 2𝑛
circulant matrix. If written out as an 𝑛 × 𝑛 matrix, it takes the form:

Q(𝑓𝑜𝑙𝑑)
𝜌 = 1

1 − 𝜌2

⎡
⎢
⎢
⎢
⎣

1 − 𝜌 + 𝜌2 −𝜌 0 ⋯ 0 0
−𝜌 1 + 𝜌2 −𝜌 ⋯ 0 0
0 −𝜌 1 + 𝜌2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝜌 1 − 𝜌 + 𝜌2

⎤
⎥
⎥
⎥
⎦

This approximation modifies the first and last diagonal elements to account for the reflection
of the data. As 𝑥1 now is the first and last data point, then we avoid the circular dependence
from the regular circulant approximation.

Extension to the Full Q Matrix

For a two-dimensional spatial field on an 𝑛1 × 𝑛2 grid, we construct the full precision matrix
Q using a Kronecker sum:

Q = (Q𝜌1
⊗ In2

+ In1
⊗ Q𝜌2

)(𝜈+1) , 𝜈 ∈ {0, 1, 2}

where ⊗ denotes the Kronecker product, 𝐼𝑛 is the 𝑛×𝑛 identity matrix, and 𝜈 is a smoothness
parameter.

When we approximate 𝑄𝜌 with a circulant matrix, this Kronecker sum results in a block-
circulant matrix with circulant blocks (BCCB). To see this, let’s consider the case where 𝜈 = 0
for simplicity:

8

Q = Q𝜌1
⊗ In2

+ In1
⊗ Q𝜌2

Now, let the two AR(1) matrices be approximated by circulant matrices, C𝜌, with base vectors
c𝜌 = 1

1−𝜌2 [1 + 𝜌2, −𝜌, 0, ..., 0, −𝜌]. Then:

Q𝜌1
≈ C�1 = 1

1 − 𝜌2
1

⎡
⎢
⎢
⎢
⎣

1 + 𝜌2
1 −𝜌1 0 ⋯ 0 −𝜌1

−𝜌1 1 + 𝜌2
1 −𝜌1 ⋯ 0 0

0 −𝜌1 1 + 𝜌2
1 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−𝜌1 0 0 ⋯ −𝜌1 1 + 𝜌2

1

⎤
⎥
⎥
⎥
⎦

,

and 𝐶𝜌2
is defined similarly. The Kronecker product C𝜌1

⊗ I𝑛2
results in a block matrix where

each block is a scalar multiple of 𝐼𝑛2
:

C�1 ⊗ In2
= 1

1 − 𝜌2
1

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + 𝜌2
1)In2

−𝜌1In2
… ⋯ −𝜌1In2

−𝜌1In2
(1 + 𝜌2

1)In2
−𝜌1In2

⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ −𝜌1In2

(1 + 𝜌2
1)In2

−𝜌1In2
−𝜌1In2

… ⋯ −𝜌1In2
(1 + 𝜌2

1)In2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

.

Similarly, I𝑛1
⊗ C𝜌2

results in a block diagonal matrix where each block is a copy of 𝐶𝜌2
:

In1
⊗ C�2 =

⎛⎜⎜⎜⎜
⎝

C�2 0 ⋯ 0
0 C�2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ C�2

⎞⎟⎟⎟⎟
⎠

.

The sum of these two matrices is a block-circulant matrix with circulant blocks:

Q ≈ C𝜌1
⊗ I𝑛2

+ I𝑛1
⊗ C𝜌2

=
⎛⎜⎜⎜⎜
⎝

B0 B1 ⋯ B𝑛1−1
B𝑛1−1 B0 ⋯ B𝑛1−2

⋮ ⋮ ⋱ ⋮
B1 B2 ⋯ B0

⎞⎟⎟⎟⎟
⎠

where each Bi is a circulant matrix. Specifically, each B𝑖 = 0 except for

B0 = (1 + 𝜌2
1)

(1 − 𝜌2
1)In2

+ C𝜌2
, and

B1 = Bn1−1 = −𝜌1
(1 − 𝜌2

1)In2
.

9

This BCCB structure allows us to use 2D FFT for efficient computations. The base matrix c
for this BCCB structure is:

c =

⎡
⎢
⎢
⎢
⎢
⎣

(1+𝜌2
1)

(1−𝜌2
1) + (1+𝜌2

2)
(1−𝜌2

2)
−𝜌1

(1−𝜌2
1) 0 ⋯ −𝜌1

(1−𝜌2
1)

−𝜌2
(1−𝜌2

2) 0 0 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝜌2
(1−𝜌2

2) 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

This base matrix 𝑐 captures the structure of the precision matrix Q and allows for efficient com-
putation of eigenvalues using the 2D Fast Fourier Transform (FFT), enabling rapid calculation
of the log-determinant and quadratic forms needed for the Gaussian copula density.

Computation with Circulant Approximation

When using the circulant approximation, we leverage the efficient computation properties of
block circulant matrices with circulant blocks (BCCB). This approach significantly reduces the
computational complexity, especially for large spatial fields. Here’s the step-by-step process:

1. Construct the Base Matrix

First, we construct the base matrix c for our BCCB approximation of Q. For an 𝑛1 × 𝑛2 grid,
c is an 𝑛2 × 𝑛1 matrix:

c =

⎡
⎢
⎢
⎢
⎢
⎣

(1+𝜌2
1)

(1−𝜌2
1) + (1+𝜌2

2)
(1−𝜌2

2)
−𝜌1

(1−𝜌2
1) 0 ⋯ −𝜌1

(1−𝜌2
1)

−𝜌2
(1−𝜌2

2) 0 0 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝜌2
(1−𝜌2

2) 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

This base matrix encapsulates the structure of our Matérn-like precision matrix.

2. Compute Initial Eigenvalues

We compute the initial eigenvalues of Q using the 2D Fast Fourier Transform (FFT) of c:

𝐴 = FFT2(c)𝜈+1

where � is the smoothness parameter.

10

3. Compute Marginal Variance and Rescale Eigenvalues

An important property of Block Circulant with Circulant Blocks (BCCB) matrices is that
the inverse of a BCCB matrix is also a BCCB matrix, and the marginal variance is the first
element in its first circulant block. We use this to efficiently compute the marginal variance
and rescale the eigenvalues:

a. Compute the element-wise inverse of 𝐴: Ainv = 1/𝐴
b. Compute the base of Q−1 using inverse 2D FFT: cinv = IFFT2(Ainv)
c. The marginal variance is given by the first element of cinv: 𝜎2 = cinv

(0,0)
d. Rescale the eigenvalues: 𝐴 = 𝜎2𝐴

This process ensures that the resulting precision matrix will have unit marginal variances, as
required for the Gaussian copula.

4. Compute Log-Determinant

The log-determinant of the scaled Q̃ can be efficiently calculated as the sum of the logarithms
of the scaled eigenvalues:

log |Q| = ∑
𝑖,𝑗

log(𝐴𝑖𝑗)

5. Compute Quadratic Form

To compute the quadratic form z𝑇 Qz, we use the following steps:

a. Compute the 2D FFT of z: ẑ = FFT2(z)
b. Multiply element-wise with the scaled eigenvalues: ŷ = 𝐴 ⊙ ẑ
c. Compute the inverse 2D FFT: y = IFFT2(ŷ)
d. Compute the dot product: z𝑇 Qz = z𝑇 y

6. Compute the Log-Density

Finally, we can compute the log-density of the Gaussian copula:

log 𝑐(u) = 1
2 log |Q| − 1

2z𝑇 Qz + 1
2z𝑇 z

where z = Φ−1(u).

11

Computation with Folded Circulant Approximation

The folded circulant approximation offers an alternative approach that can provide better
accuracy near the edges of the spatial field. This method is based on the idea of reflecting the
data along each coordinate axis, effectively doubling the size of the field. Other than that, the
algorithmic implementation is the same except that the circulant approximation matrices to
Q𝜌 are now 2𝑛 × 2𝑛.

First, we reflect the data along each coordinate axis. For a 2D spatial field represented by an
𝑛 × 𝑛 matrix, the reflected data takes the form:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥11 ⋯ 𝑥1𝑛2
𝑥1𝑛2

⋯ 𝑥11
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑥𝑛11 ⋯ 𝑥𝑛1𝑛2
𝑥𝑛1𝑛2

⋯ 𝑥𝑛11
𝑥𝑛11 ⋯ 𝑥𝑛1𝑛2

𝑥𝑛1𝑛2
⋯ 𝑥𝑛11

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑥11 ⋯ 𝑥1𝑛2

𝑥1𝑛2
⋯ 𝑥11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

This reflection creates a 2𝑛1 × 2𝑛2 matrix. The matrix is then stacked in lexicographic order
before entering into the quadratic forms.

Results

Computational Efficiency

Table 1 presents the results of a benchmark comparing the time it takes to evaluate the gaussian
copula density described above. For each grid size, we report the computation time for the
exact method and the two approximations, along with the speed-up factor relative to the exact
method. Each calculation was performed twenty times and the median times are shown in the
table. The Cholesky method is described in the appendix.

Eigen Circulant Folded
Grid Size Cholesky Time Speed-up Time Speed-Up Time Speed-Up
10x10 73.04µs 173.43µs 0.42x 31.9µs 2.29x 44.16µs 1.65x
20x20 1.43ms 267.01µs 5.36x 44µs 32.54x 151.74µs 9.44x
30x30 9.88ms 808.5µs 12.22x 110.2µs 89.63x 243.07µs 40.64x
40x40 37.88ms 2.06ms 18.35x 141.5µs 267.64x 393.79µs 96.18x
50x50 106.28ms 4.56ms 23.33x 188.5µs 563.82x 604.87µs 175.7x
60x60 253.66ms 8.79ms 28.86x 242.4µs 1046.59x 836.07µs 303.4x
70x70 538.42ms 16.81ms 32.04x 333.1µs 1616.37x 1.17ms 459.89x

12

80x80 1.02s 29.59ms 34.63x 393.9µs 2601.89x 1.59ms 643.46x
90x90 1.81s 48.56ms 37.27x 598.9µs 3022.23x 2.04ms 888.28x
100x100 3.09s 76.03ms 40.59x 593µs 5204.38x 2.42ms 1276.46x

Source: Article Notebook

References

Besag, Julian, and Debashis Mondal. 2005. “First-Order Intrinsic Autoregressions and the de
Wijs Process.” Biometrika 92 (4): 909–20. https://doi.org/10.1093/biomet/92.4.909.

Gray, Robert M. 2006. “Toeplitz and Circulant Matrices: A Review.” Foundations and
Trends® in Communications and Information Theory 2 (3): 155–239. https://doi.org/10.1
561/0100000006.

Joe, Harry. 1997. Multivariate Models and Multivariate Dependence Concepts. New York:
Chapman; Hall/CRC.

Kent, John T., and Kanti V. Mardia. 2022. Spatial Analysis. John Wiley; Sons.
Knorr-Held, Leonhard. 2000. “Bayesian Modelling of Inseparable Space-Time Variation in

Disease Risk.” Statistics in Medicine 19 (17-18): 2555–67. https://doi.org/10.1002/1097-
0258(20000915/30)19:17/18%3C2555::AID-SIM587%3E3.0.CO;2-#.

Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An Explicit Link Between Gaus-
sian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equa-
tion Approach.” Journal of the Royal Statistical Society: Series B (Statistical Methodology)
73 (4): 423–98. https://doi.org/10.1111/j.1467-9868.2011.00777.x.

“Matrix Analysis for Scientists and Engineers | SIAM Publications Library.” n.d. https:
//epubs.siam.org/doi/book/10.1137/1.9780898717907.

Mondal, D. 2018. “On Edge Correction of Conditional and Intrinsic Autoregressions.”
Biometrika 105 (2): 447–54. https://doi.org/10.1093/biomet/asy014.

Nelsen, Roger B. 2006. An Introduction to Copulas. 2nd ed. Springer Series in Statistics. New
York: Springer.

Riebler, Andrea, Sigrunn H. Sørbye, Daniel Simpson, and Håvard Rue. 2016. “An Intuitive
Bayesian Spatial Model for Disease Mapping That Accounts for Scaling.” https://journals
.sagepub.com/doi/full/10.1177/0962280216660421.

Rue, Håvard. 2005. “Marginal Variances for Gaussian Markov Random Fields,” January.
Rue, Havard, and Leonhard Held. 2005. Gaussian Markov Random Fields: Theory and

Applications. CRC Press.
Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for

Latent Gaussian Models by Using Integrated Nested Laplace Approximations.” Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): 319–92. https:
//doi.org/10.1111/j.1467-9868.2008.00700.x.

Sklar, M. 1959. “Fonctions de Répartition à n Dimensions Et Leurs Marges.” Annales de
l’ISUP VIII (3): 229–31. https://hal.science/hal-04094463.

13

https://bgautijonsson.github.io/MaternEigenPaper/index.qmd.html
https://doi.org/10.1093/biomet/92.4.909
https://doi.org/10.1561/0100000006
https://doi.org/10.1561/0100000006
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18%3C2555::AID-SIM587%3E3.0.CO;2-#
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18%3C2555::AID-SIM587%3E3.0.CO;2-#
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://epubs.siam.org/doi/book/10.1137/1.9780898717907
https://epubs.siam.org/doi/book/10.1137/1.9780898717907
https://doi.org/10.1093/biomet/asy014
https://journals.sagepub.com/doi/full/10.1177/0962280216660421
https://journals.sagepub.com/doi/full/10.1177/0962280216660421
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://hal.science/hal-04094463

Sørbye, Sigrunn Holbek, and Håvard Rue. 2014. “Scaling Intrinsic Gaussian Markov Random
Field Priors in Spatial Modelling.” Spatial Statistics, Spatial statistics miami, 8 (May):
39–51. https://doi.org/10.1016/j.spasta.2013.06.004.

Appendix

Cholesky Methods

Standard methods of evaluating multivariate normal densities using the Cholesky decomposi-
tion were implemented to compare with the new methods for benchmarking.

Unscaled Precision Matrix

Precision Matrix Construction

We start by constructing the precision matrix 𝑄 for a 2D Matérn field on a grid of size 𝑑𝑥×𝑑𝑦:

𝑄 = 𝑄1 ⊗ 𝐼𝑑𝑦
+ 𝐼𝑑𝑥

⊗ 𝑄2

where ⊗ denotes the Kronecker product, 𝑄1 and 𝑄2 are 1D precision matrices for the x and y
dimensions respectively (typically AR(1)-like structures), and 𝐼𝑑𝑥

and 𝐼𝑑𝑦
are identity matrices

of appropriate sizes.

Density Computation

For a Matérn field with smoothness parameter 𝜈, we need to work with 𝑄𝜈+1. We can efficiently
compute the log-determinant, log |𝑄𝜈+1|, and the quadratic form, 𝑥𝑇 𝑄𝜈+1𝑥, without explicitly
forming 𝑄𝜈+1. To do this, we compute the Cholesky decomposition, 𝑄 = 𝐿𝐿𝑇 , where L is a
lower triangular matrix, and make use of the following equations:

log |𝑄𝜈+1| = (𝜈 + 1) log |𝑄| = 2(𝜈 + 1) ∑
𝑖

log(𝐿𝑖𝑖),

𝑥𝑇 𝑄𝑥 = 𝑥𝑇 𝐿𝐿𝑇 𝑥 = ||𝐿𝑇 𝑥||22
𝑥𝑇 𝑄2𝑥 = 𝑥𝑇 𝐿𝐿𝑇 𝐿𝐿𝑇 𝑥 = ||𝐿𝐿𝑇 𝑥||22
𝑥𝑇 𝑄3𝑥 = 𝑥𝑇 𝐿𝐿𝑇 𝐿𝐿𝑇 𝐿𝐿𝑇 𝑥 = ||𝐿𝑇 𝐿𝐿𝑇 𝑥||22.

14

https://doi.org/10.1016/j.spasta.2013.06.004

Algorithm

1. Construct 𝑄 = 𝑄1 ⊗ 𝐼𝑑𝑦
+ 𝐼𝑑𝑥

⊗ 𝑄2
2. Compute Cholesky decomposition 𝑄 = 𝐿𝐿𝑇

3. Compute log-determinant: log |𝑄𝜈+1| = 2(𝜈 + 1) ∑𝑖 log(𝐿𝑖𝑖)
4. For each observation 𝑥:

i) Initialize 𝑦 = 𝑥
ii) For 𝑗 from 0 to 𝜈:

• If 𝑗 is even: 𝑦 = 𝐿𝑇 𝑦
• If 𝑗 is odd: 𝑦 = 𝐿𝑦

iii) Compute quadratic form 𝑞 = 𝑦𝑇 𝑦
5. Compute log-density: log 𝑝(𝑥) = −1

2(𝑑 log(2𝜋) + log |𝑄𝜈+1| + 𝑞)

Scaled Precision Matrix

Precision Matrix Construction

We start by constructing the precision matrix 𝑄 for a 2D Matérn field on a grid of size 𝑑𝑥×𝑑𝑦:

𝑄 = 𝑄1 ⊗ 𝐼𝑑𝑦
+ 𝐼𝑑𝑥

⊗ 𝑄2

where ⊗ denotes the Kronecker product, 𝑄1 and 𝑄2 are 1D precision matrices for the x and y
dimensions respectively (typically AR(1)-like structures), and 𝐼𝑑𝑥

and 𝐼𝑑𝑦
are identity matrices

of appropriate sizes. We will then have to work with the matrix 𝑄𝜈+1.

To ensure unit marginal variances, we need to scale this precision matrix. Let 𝐷 be a diagonal
matrix where 𝐷𝑖𝑖 = √Σ𝑖𝑖, and Σ = (𝑄𝜈+1)−1. The scaled precision matrix is then:

𝑄̃ = 𝐷𝑄𝜈+1𝐷

Efficient Computation of Scaling Matrix D

1. Compute the Cholesky decomposition of the original 𝑄 = 𝐿𝐿𝑇

2. Compute 𝑅 = 𝐿−1, so that 𝑆 = 𝑄−1 = 𝑅𝑇 𝑅.
3. We then calculate the entries in 𝐷 using the following steps:

i. For 𝜈 = 0, 𝐷𝑖𝑖 = √Σ𝑖𝑖 = √∑𝑗(𝑅𝑗𝑖)2, the column-wise norm of 𝑅.
ii. For 𝜈 = 1, we use the column-wise norm of 𝑅𝑇 𝑅
iii. For 𝜈 = 2, we use the column-wise norm of 𝑅𝑅𝑇 𝑅

15

Log determinant

1. First, note that log |𝑄̃| = log |𝐷𝑄𝜈+1𝐷| = 2 log |𝐷| + log |𝑄𝜈+1|
2. We can compute log |𝐷| directly from the diagonal elements of D, i.e. log |𝐷| =

∑𝑖 log(𝐷𝑖𝑖)
3. For log |𝑄𝜈+1|, we can use the properties of the Cholesky decomposition: log |𝑄𝜈+1| =

(𝜈 + 1) log |𝑄| = (𝜈 + 1) log |𝐿𝐿𝑇 | = 2(𝜈 + 1) ∑𝑖 log(𝐿𝑖𝑖)
4. Combining these, we get log |𝑄̃| = 2 ∑𝑖 log(𝐷𝑖𝑖) + 2(𝜈 + 1) ∑𝑖 log(𝐿𝑖𝑖)

Quadratic Form

1. First, note that 𝑧𝑇 𝑄̃𝑧 = 𝑧𝑇 𝐷𝑄𝜈+1𝐷𝑧 = (𝐷𝑧)𝑇 𝑄𝜈+1(𝐷𝑧)
2. Let 𝑦 = 𝐷𝑧. We can compute this element-wise as 𝑦𝑖 = 𝐷𝑖𝑖𝑧𝑖
3. Now we compute 𝑦𝑇 𝑄𝜈+1𝑦 as in the unscaled case.

Algorithm

Putting it all together, here’s the algorithm for computing the log-density of the Gaussian
copula using the scaled precision matrix:

1. Construct 𝑄 = 𝑄1 ⊗ 𝐼𝑑𝑦
+ 𝐼𝑑𝑥

⊗ 𝑄2
2. Compute Cholesky decomposition 𝑄 = 𝐿𝐿𝑇

3. Compute 𝑅 = 𝐿−1 and use it to compute D as described earlier
4. Compute log-determinant: log |𝑄̃| = 2 ∑𝑖 log(𝐷𝑖𝑖) + 2(𝜈 + 1) ∑𝑖 log(𝐿𝑖𝑖)
5. For each observation 𝑧 = Φ−1(𝑢):

i) Compute 𝑦 = 𝐷𝑧
ii) Compute 𝑦𝑇 𝑄𝜈+1𝑦 as in the unscaled case.

6. Compute log-density: log 𝑐(𝑢) = −1
2(𝑑 log(2𝜋) + log |𝑄̃| + 𝑞 − 𝑧𝑇 𝑧)

16

	Introduction
	Problem Formulation
	Review

	Methods
	Gaussian Copula Density Computation
	Precision Matrix Structure
	Computation Process
	Step 1: Eigendecomposition of \mathbf{Q}_{\rho}
	Step 2: Computation of Marginal Standard Deviations
	Step 3: Scaling the Eigendecomposition
	Step 4: Efficient Computation of Log-Density

	Circulant and Folded Circulant Approximations
	Circulant Matrices
	Block Circulant Matrices
	Approximations for Q_{\rho}
	Extension to the Full Q Matrix

	Computation with Circulant Approximation
	1. Construct the Base Matrix
	2. Compute Initial Eigenvalues
	3. Compute Marginal Variance and Rescale Eigenvalues
	4. Compute Log-Determinant
	5. Compute Quadratic Form
	6. Compute the Log-Density

	Computation with Folded Circulant Approximation

	Results
	Computational Efficiency

	References
	Appendix
	Cholesky Methods
	Unscaled Precision Matrix
	Scaled Precision Matrix

